

Regupol[®] | **Regufoam[®]**

Vibration Technology Sound Insulation

Technical Details: Vibration Isolation, Impact Sound Insulation Under High Loads

<image>

Table of Contents

1.1	Table of Contents
1.2	Company Information
1.3	Sample Projects of Vibration Isolation and Impact Sound Insulation Under High Loads
1.4	Overview Technical Details Regufoam® vibra- tion and Regupol® vibration
2	Technical Details Regufoam [®] vibration
2.1	Regufoam® vibration 150 ^{plus} permanent static load 0.011 N/mm ²
2.2	Regufoam [®] vibration 190 ^{plus} permanent static load 0.018 N/mm ²
2.3	Regufoam[®] vibration 220 ^{plus} permanent static load 0.028 N/mm ²
2.4	Regufoam[®] vibration 270 ^{plus} permanent static load 0.042 N/mm ²
2.5	Regufoam® vibration 300 ^{plus} permanent static load 0.055 N/mm ²
2.6	Regufoam [®] vibration 400 ^{plus} permanent static load 0.11 N/mm ²
2.7	Regufoam® vibration 510 ^{plus} permanent static load 0.22 N/mm ²
2.8	Regufoam® vibration 570 ^{plus} permanent static load 0.30 N/mm ²
2.9	Regufoam® vibration 680 ^{plus} permanent static load 0.45 N/mm ²
2.10	Regufoam® vibration 740 ^{plus} permanent static load 0.60 N/mm ²
2.11	Regufoam® vibration 810 ^{plus} permanent static load 0.85 N/mm ²
2.12	Regufoam [®] vibration 990 ^{plus} permanent static load 2.50 N/mm ²

3	Technical Details Regupol® vibration
3.1	Regupol[®] vibration 200 permanent static load 0.02 N/mm ²
3.2	Regupol[®] vibration 300 permanent static load 0.05 N/mm ²
3.3	Regupol[®] vibration 400 permanent static load 0.10 N/mm ²
3.4	Regupol[®] vibration 450 permanent static load 0.12 N/mm ²
3.5	Regupol® vibration 480 permanent static load 0.15 N/mm ²
3.6	Regupol[®] vibration 550 permanent static load 0.30 N/mm ²
3.7	Regupol[®] vibration 800 permanent static load 0.80 N/mm ²
3.8	Regupol[®] vibration 1000 permanent static load 1.50 N/mm ²
4	Technical Details Impact Sound Insula- tion Under Screed
4.1	Regupol[®] sound 47 impact sound insulation under screed
4.2	Regupol[®] sound 17 impact sound insulation under screed
4.3	Regupol® sound 12 impact sound insulation under screed
4.4	Regufoam [®] sound 10 impact sound insulation under screed

1.1

BSW in Brief

BSW is a manufacturer of

- polyurethane foam for vibration isolation
- polyurethane-bonded rubber materials for impact noise insulation and vibration isolation
- composites of various materials bonded with polyurethane
- blocks and cuts of composite foam
- sports surfaces and special flooring
- anti-slip mats for load securing

German Trade Register Siegen HRB-No. 6381

Managing Directors Ulf Pöppel, Rainer Pöppel

VAT Reg. No. DE 126586778

Number of employees in the group of companies $400\,$

Sales by the group of companies approx. € 88 million

Founded in 1954

Locations

Factory 1, Headquarter BSW GmbH Am Hilgenacker 24 57319 Bad Berleburg Germany Phone: +49 2751 803-0 Fax: +49 2751 803-109 info@berleburger.de www.berleburger.com www.bsw-vibration-technology.com

Factory 2 Industriestraße 6 57319 Bad Berleburg-Raumland Germany

Factory 3 Sählingstraße 16 57319 Bad Berleburg Germany

// REGUPOLAMERICA

Regupol America LLC 33 Keystone Drive Lebanon, PA 17042 USA Phone: +1 800 537 8737 Fax: +1 717 675 2199 sales@regupolamerica.com www.regupolamerica.com

Regupol Australia Pty. Ltd.155 Smeaton Grange RoadSmeaton Grange 2567 NSWAustraliaTel.+61 2 4624 0050Fax+61 2 4647 4403vibration@regupol.com.auwww.regupol-vibration-technology.com.au

BSW Shanghai Co. Ltd. Delight Pacific Suites, Room 2909 No.831 Xinzha Road 200041 Shanghai China Phone: +86 2162673369 Fax: +86 2162673669 info@regupol.cn www.regupol.cn

Sample Projects

Vibration Isolation

AGBU administration building, Jerewan, Armenia: full-surface decoupling of the building foundation with ${\rm Regupol}^{\circledast}$

Southhampton Row, London, UK: full surface decoupling of the building foundation with ${\it Regufoam}^{\circledast}$

Kurfürstenplatz, Munich, Germany: vertical decoupling of the building foundation with ${\bf Regupol}^{\circledast}$

Flight simulator Airbus A400M, Wunstorf, Germany: fullsurface decoupling of machine foundation with **Regupol**®

Nextower, Palaisquartier, Frankfurt, Germany: vibration isolation of heating, ventilating, and air conditioning with ${\rm Regupol}^{\circledast}$

Commuter train station, Helsinki, Finland: $\textbf{Regupol}^{\texttt{®}}$ ballast mats

Sample Projects

Impact Sound Insulation Under Screed

RTL-Studios, Cologne, Germany: room-in-room construction with $\textbf{Regupol}^{\circledast}$ impact sound insulation under screed

Wisselord-Studios, Hilversum, Netherlands: room-in-room construction with ${\bf Regufoam}^{\circledast}$

Audi plant, Györ, Hungary: impact sound insulation under screed with **Regupol**[®] in heavy-load high-bay racking

ADAC Building, Munich, Germany: **Regupol**[®] impact sound insulation under screed in in-house printing plant

Cinemagnum Cinema, Nuremberg, Germany: **Regupol**[®] impact sound insulation under screed in subterranean garage

Elbphilharmonie, Hamburg, Germany: **Regupol**[®] impact sound insulation under screed in concert halls and studios

vibration

Technical Details Overview

Regufoam® vibration is a mixed cell polyurethane foam for vibration isolation. It is available in 12 different qualities.

Standard forms of delivery, ex warehouse

Rolls for types 150, 190, 220, 270, 300

Thickness: 12 and 25 mm, special thicknesses on requestLength:5,000 mm, special lengths availableWidth:1,500 mm

Plates for types 400, 510, 570, 680, 740, 810, 990

Thickness:12 and 25 mm, special thicknesses on requestLength:1,500 mm, special lengths availableWidth:1,00 mm

Stripping/Plates

On request

Die-cutting, water-jet cutting, self-adhesive versions possible

Regufoam [®] vibration Colour	150 ^{plus} Green	190 ^{plus} Yellow	220 ^{plus} Purple	270 ^{plus} Blue	300 ^{plus} Black	400 ^{plus} Grey	510 ^{plus} Beige	570 ^{plus} Rose	680 ^{plus} Turquoise	740 ^{plus} Red	810 ^{plus} Brown	990 ^{plus} Orange
Continuous static load N/mm ²	0.011	0.018	0.028	0.042	0.055	0.11	0.22	0.30	0.45	0.60	0.85	2.50
Optimum load range N/mm ²	0.004 to 0.011	0.011 to 0.018	0.018 to 0.028	0.028 to 0.042	0.042 to 0.055	0.055 to 0.11	0.11 to 0.22	0.22 to 0.30	0.30 to 0.45	0.45 to 0.60	0.60 to 0.85	0.85 to 2.50
Tensile strength ¹ N/mm ²	0.31	0.4	0.5	0.9	1.2	1.5	2.4	2.9	3.6	4.0	4.6	6.9
Mechanical loss factor ²	0.28	0.25	0.22	0.20	0.18	0.17	0.15	0.14	0.12	0.11	0.10	0.09
Static modulus of elasticity ³ N/mm ²	0.06 to 0.16	0.1 to 0.25	0.15 to 0.35	0.25 to 0.45	0.35 to 0.58	0.6 to 1.0	1.1 to 1.7	2.6 to 2.7	2.0 to 2.9	4.3 to 5.9	5.8 to 7.2	20.0 to 78.0
Dynamic modulus of elasticity ⁴ N/mm ²	0.15 to 0.38	0.25 to 0.55	0.35 to 0.75	0.60 to 1.05	0.68 to 1.25	1.2 to 2.0	2.2 to 3.7	5.1 to 6.3	6.8 to 10.0	7.9 to 13.0	11.0 to 16.5	41.0 to 160.0
Compression hardness ⁵ kPa	14	22	22	63	82	170	330	620	840	1050	1241	3640
Fire behaviour						B2						

1 Measurement based on DIN EN ISO 1798

- 2 Measurement based on DIN 53513; load-, amplitude- and frequencydependent.
- 3 Measurement based on an EN 826.
- 4 Measurement based on DIN 53513; depending in frequency, load and thickness
- Measurement based on DIN EN ISO 3386-2; compressive stress at 25 % deformation, depending on thickness.

Technical services and offers based on these are subject to our General Terms and Conditions of sale. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration

Regufoam® – Mixed-Cell Polyurethane Elastomers

Material Composition

Regufoam[®] elastomers consist of a mixed-cell polyurethane foam. Similar to the various **Regupol**[®] types, **Regufoam**[®] isolation materials have been precisely designed for different load ranges. Various standard thicknesses of 12 mm, 25 mm, 37 mm and 50 mm cover a wide spectrum of support frequencies up to 8 Hz.

The successful use of polyurethanes in vibration isolation over the course of many years offers expert consultants a conventional solution and a valuable alternative to **Regupol**[®] elastomers.

Moreover, the BSW test lab offers the option of developing project- and application-specific elastomers with special properties.

Regufoam[®] elastomers and their specific load ranges can be distinguished from one another using colour codes (green, yellow, purple, blue, black, grey, beige, rose, turquoise, red, brown, orange).

Effectiveness of the Regufoam® Elastomers

Regufoam[®] elastomers can be specifically set for support frequencies between 20 Hz and 8 Hz in a broad load range from 0.011 N/mm² to 2.50 N/mm². Expert consultants in particular benefit from this large degree of flexibility.

The use of polyurethanes in vibration isolation over the course of many years offers expert consultants a conventional solution and valuable alternative. The admissible continuous load limits must be kept, as overload on the elastomers may lead to creep as well as rigidification of the material.

Regufoam[®] elastomers are produced and shipped in rolls. They can be cut to size with a standard utility knife right at the construction site. The professional company at the construction site is thus ensured that the installation is going to be simple, quick and, above all, cost-efficient.

Possible Uses

Due to their different dynamic rigidities and admissible load ranges, building and machine foundations can be placed elastically on strips or delicate point supports. Due to the low support frequencies, this type of support is technically efficient, but more difficult to plan and execute.

The majority of isolation jobs are performed on full-surface **Regufoam**[®] elastomers with lower rigidity, because this is more feasible and less error-prone.

The technical details, clearly arranged and determined as well as tested, provide a full overview of the load range of the **Regufoam**[®] elastomers and their non-linear material properties. They allow expert consultants to select and properly size the elastomer type that suits the situation at hand and meets its respective requirements.

Regufoam[®] elastomers are moisture- and rot-resistant. They are also ozone-resistant, but the colours may fade over time due to UV radiation. Because of their mixed-cell structure, especially types with lower dynamic rigidity can absorb water. These must be protected against water uptake.

Regupol®

vibration

Technical Details Overview

Regupol[®] vibration is a rubber-polyurethane-composite for vibration isolation. It is available in 8 different qualities.

Standard forms of delivery, ex warehouse

Depending on material. Exact dimensions are mentioned in the technical data sheets of each material type.

Stripping/Plates

On request

Die-cutting, water-jet cutting, self-adhesive versions possible

Regupol [®] vibration	200	300	400	450	480	550	800	1000
Continuous static load N/mm ²	0.02	0.05	0.10	0.12	0.15	0.30	0.80	1.50
Optimum load range N/mm ²	0.004 to 0.014	0.010 to 0.050	0.050 to 0.10	6	0.10 to 0.15	0.15 to 0.30	0.20 to 0.80	0.80 to 1.50
Tensile strength ¹ N/mm ²	0.12	0.30	0.34	0.15	0.36	0.60	0.90	2.30
Mechanical loss factor ²	0.22	0.18	0.17	0.2	0.17	0.16	0.18	0.16
Static modulus of elasticity ³ N/mm ²	0.02 to 0.08	0.1 to 0.2	0.3 to 0.55	0.2 to 0.4	0.25 to 0.8	0.5 to 1.7	1.2 to 2.9	4.0 to 11.0
Dynamic modulus of elasticity ⁴ N/mm ²	0.05 to 0.38	0.2 to 1.4	0.9 to 2.4	0.45 to 2.7	1.2 to 3.3	2.5 to 7.0	3.6 to 18.2	15.0 to 45.0
Compression hardness⁵ kPa	14	50	180	83	220	415	545	1650
Fire behaviour				B2	, E			

1 Measurement based on DIN EN ISO 1798

- 2 Measurement based on DIN 53513; load-, amplitude- and frequencydependent.
- 3 Measurement based on an EN 826.
- 4 Measurement based on DIN 53513; depending in frequency, load and thickness
- Measurement based on DIN EN ISO 3386-2; compressive stress at 25 % deformation, depending on thickness.
- 6 Regupol[®] vibration 450 is used for vertical isolation.

Technical services and offers based on these are subject to our General Terms and Conditions of sale. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

Regupol® Elastomer Mats

Material Composition

Regupol[®] elastomers are composed of SBR and NBR rubber elements. For their production, rubber granulates, rubber fibres and rubber crumbs are combined with one another, processed and elasticised with various polyurethanes using a special manufacturing method.

Eight different **Regupol**[®] elastomers are available for the daily requirements. They can be used in a very wide load range if required.

The **Regupol**[®] elastomers offer a solution that is technically sufficient as well as the most economical one available for most vibration-technology-related jobs.

Moreover, the BSW test lab offers the option of developing special, project- and application-specific types which can be given desired elastomer properties.

Regupol[®] elastomers can be distinguished from one another based on their individual load ranges and, accordingly, their dynamic rigidities.

Possible Uses

 $\textbf{Regupol}^{\texttt{e}}$ elastomers are suitable for all different kinds of vibration isolation.

Due to higher dynamic rigidities and the admissible load ranges of some elastomer types, buildings and machine foundations can either be bedded elastically on strips or on delicate point supports. Due to the low support frequencies, this type of support is technically efficient, but more difficult to plan and execute. The majority of isolation jobs are performed on full-surface **Regupol**[®] elastomers with lower rigidity, because this is more feasible and less error-prone.

The technical details provide a full overview of the load range of the **Regupol**[®] elastomers and their non-linear material properties. They allow expert consultants to select and properly size the elastomer type that suits the situation at hand and meets its respective requirements.

Additional benefits of **Regupol**[®] elastomers are their excellent moisture resistance, their rot-proof properties, their ozone resistance and their permanent elasticity even after frost-thaw cycles.

The use of **Regupol**[®] is therefore admissible not only inside but also outside of buildings. The only exception here is **Regupol**[®] **vibration 200**. Because of its rigidity and its cellular structure this material has to be protected against water uptake.

Effectiveness of the Regupol® Elastomers

Regupol[®] elastomers can be specifically set for support frequencies between 20 Hz and 10 Hz in a broad load range from 0.050 N/mm² to 1.50 N/mm². Expert consultants in particular benefit from this large degree of flexibility.

The natural frequency progressions of the **Regupol**[®] elastomers are benign, offering expert consultants nearly constant natural frequencies across a wide load range. This makes for a large degree of security in planning and execution.

The creep (or creep behaviour) is low for all different **Regupol**[®] elastomers at approx. 5-7% of the total thickness. The admissible permanent load limits are kept, the only effect of overloading on the elastomers is increased rigidity (rise in dynamic rigidity and natural frequency), which shows in progressive deflection.

Regupol[®] elastomers are produced and shipped in rolls. They can be cut to size with a standard utility knife right at the construction site. The professional company at the construction site is thus ensured that the installation is going to be simple, quick and cost-efficient.

on your wavelength

Regufoam[®]

Vibration Isolation Technical Details

Cover Rf, Version 1, Release 03 2013, Sheet 1 of 1

Downloads

All Tools for the Download

You will find all documents and information which you need for making a decision, for calculation as well as the installation and application of the BSW vibration technology products, at **www. bsw-vibration-technology.com**. In a matter of seconds you can download technical datasheets, certificates and installation instructions, all in the required file formats.

Up to date information is provided on our website and in the PDF versions of this catalogue. The PDF versions are available for download on our website.

The website **www.bsw-vibration-technology.com** serves mainly as a planning basis for architectural acoustics and construction engineers. You must register to use the technical documents. BSW will send you your user name and password right away. Since being put up in January 2010, this website already has several hundred registered users.

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 150 plus

2.1

N/mm²

-0.85

-0.60

-0.45

snld066

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

190plus

150^{plus}

Standard forms of delivery, ex warehouse Rolls

Thickness:12 and 25 mm, special thicknesses on requestLength:5,000 mm, special lengths availableWidth:1,500 mm

Stripping/Plates

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.011 N/mm² Continuous and variable loads/operating load range 0 to 0.016 N/mm² Peak loads (rare, short-term loads) 0.5 N/mm²

Static modulus of elasticity	Based on EN 826	0.06 - 0.16	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	-0.30 -
Dynamic modulus of elasticity	Based on DIN 53513	0.15 - 0.38	N/mm ²	Depending on frequency, load and thickness, see figure "dynamic stiffness"	-0.22
Mechanical loss factor	DIN 53513	0.28		Load-, amplitude- and frequency-dependent	
Compression set	Based on DIN EN ISO 1856	1.6	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.11 —
Tensile strength	Based on DIN EN ISO 1798	0.31	N/mm ²		-0.055
Elongation at break	Based on DIN EN ISO 1798	220	%		-0.042
Tear resistance	Based on DIN ISO 34-1		N/mm		
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability	-0.028
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8	[-] [-]	Steel (dry) Concrete (dry)	
Compression hardness	Based on DIN EN ISO 3386-2	14	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm	-0.018
Rebound elasticity	Based on DIN EN ISO 8307	34		dependent on thickness, test specimen $h = 25 \text{ mm}$	-0.011
Force reduction	DIN EN 14904	49	%	dependent on thickness, test specimen $h = 25 \text{ mm}$	0

vibration 150 plus

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

vibration 150 plus

Vibration Isolation

Natural Frequency

2.1

Regufoam®

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.011 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

of 0.011 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.

vibration 150 plus

vibration 150 plus

2.1

Modulus of Elasticity

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of ± 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Long-Term Creep Test

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 150 plus

	0.00	
		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1,000	10,000	100,00

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regufoam 150, Version 1, Release 03 2013, sheet 2 of 2

vibration 190 plus

2.2

N/mm² 2.50

snid066

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

150^{plus}

Standard forms of delivery, ex warehouse Rolls

Thickness: 12 and 25 mm, special thicknesses on request Length: 5,000 mm, special lengths available Width: 1,500 mm

Stripping/Plates

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.018 N/mm² Continuous and variable loads/operating load range 0 to 0.028 N/mm² Peak loads (rare, short-term loads) 0.8 N/mm²

Static modulus of elasticity	Based on EN 826	0.1 - 0.25	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	-0.30 -
Dynamic modulus of elasticity	Based on DIN 53513	0.25 - 0.55	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"	-0.22
Mechanical loss factor	DIN 53513	0.25		Load-, amplitude- and frequency-dependent	
Compression set	Based on DIN EN ISO 1856	2.0	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.11 —
Tensile strength	Based on DIN EN ISO 1798	0.4	N/mm ²		-0.055
Elongation at break	Based on DIN EN ISO 1798	220	%		-0.042
Tear resistance	Based on DIN ISO 34-1	2.0	N/mm		
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability	-0.028
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8	[-] [-]	Steel (dry) Concrete (dry)	
Compression hardness	Based on DIN EN ISO 3386-2	22	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm	-0.018
Rebound elasticity	Based on DIN EN ISO 8307	35		dependent on thickness, test specimen $h = 25 \text{ mm}$	-0.011
Force reduction	DIN EN 14904	61	%	dependent on thickness, test specimen $h = 25 \text{ mm}$	0

vibration 190 plus

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

vibration 190 plus

Vibration Isolation

Natural Frequency

N/mm² -2.50-066 -0.85 ŏ 81 -0.60-40 -0.45 680 -0.30ō 51 0.22 ŏ ß 0.11 400 -0.055 300 -0.042 270^p -0.028 220F -0.018 -0.011 150p 0

2.2

Regufoam®

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.018 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.018 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.

vibration 190 plus

vibration 190 plus

2.2

Modulus of Elasticity

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load an and amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Regufoam[®]

Long-Term Creep Test

Dimensions of specimens 300 mm x 300 mm x 50 mm

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 190 plus

1,000	10,000	100.000

ım

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regufoam 190, Version 1, Release 03 2013, sheet 2 of 2

vibration 220 plus

2.3

N/mm²

-0.85

-0.60

-0.45

snid066

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

190plus

150^{plus}

Standard forms of delivery, ex warehouse Rolls

Thickness:12 and 25 mm, special thicknesses on requestLength:5,000 mm, special lengths availableWidth:1,500 mm

Stripping/Plates

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.028 N/mm² Continuous and variable loads/operating load range 0 to 0.04 N/mm² Peak loads (rare, short-term loads) 0.9 N/mm²

Static modulus of elasticity	Based on EN 826	0.15 - 0.35	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	-0.30 -
Dynamic modulus of elasticity	Based on DIN 53513	0.35 - 0.75	N/mm ²	Depending on frequency, load and thickness, see figure "dynamic stiffness"	-0.22 -
Mechanical loss factor	DIN 53513	0.22	[-]	Load-, amplitude- and frequency-dependent	
Compression set	Based on DIN EN ISO 1856	2.3	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.11 -
Tensile strength	Based on DIN EN ISO 1798	0.5	N/mm ²		-0.055
Elongation at break	Based on DIN EN ISO 1798	180	%		-0.042
Tear resistance	Based on DIN ISO 34-1		N/mm		
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability	-0.028
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8	[-] [-]	Steel (dry) Concrete (dry)	
Compression hardness	Based on DIN EN ISO 3386-2	39	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm	-0.018
Rebound elasticity	Based on DIN EN ISO 8307	47		dependent on thickness, test specimen $h = 25 \text{ mm}$	-0.011
Force reduction	DIN EN 14904	69	%	dependent on thickness, test specimen $h = 25 \text{ mm}$	0

vibration 220 plus

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

vibration 220 plus

Vibration Isolation

Natural Frequency

N/mm² -2.50-066 -0.85 ŏ $\overline{\mathbf{0}}$ -0.60 40 -0.45 680 0.30 ō 5 0.22 ŏ ŝ 0.11 400 -0.055 300 -0.042 ŏ N 0.028 220^{pl} -0.018 06 -0.011 150^p 0

2.3

Regufoam®

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.028 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Regufoam 220, Version 1, Release 03 2013, sheet 2 of 2

vibration 220 plus

Modulus of Elasticity

0.9

0.8

0.7

0.6

0.5

0.3

0.2

0.1

0.0

0.00

mm²]

sticity [N

ę 0.4 40 Hz

10 Hz

5 H

Static

0.01

vibration 220 plus

Regufoam[®] vibration 220 plus

2.3

Regufoam[®]

Long-Term Creep Test

Dimensions of specimens 300 mm x 300 mm x 50 mm

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Pressure [N/mm²]

0.03

0.04

0.05

0.02

Dynamic Stiffness

Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 220 plus

_		
1,000	10,000	100

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regufoam 220, Version 1, Release 03 2013, sheet 2 of 2

vibration 270 plus

2.4

N/mm²

-0.85

-0.60

-0.45

snid066

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270^{plu}

220plus

190plus

150^{plus}

Standard forms of delivery, ex warehouse Rolls

Thickness:12 and 25 mm, special thicknesses on requestLength:5,000 mm, special lengths availableWidth:1,500 mm

Stripping/Plates

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.042 N/mm² Continuous and variable loads/operating load range 0 to 0.062 N/mm² Peak loads (rare, short-term loads) 1.2 N/mm²

Static modulus of elasticity	Based on EN 826	0.25 - 0.45	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	-0.30 -
Dynamic modulus of elasticity	Based on DIN 53513	0.60 - 1.05	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"	-0.22
Mechanical loss factor	DIN 53513	0.2		Load-, amplitude- and frequency-dependent	
Compression set	Based on DIN EN ISO 1856	3.2	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.11 -
Tensile strength	Based on DIN EN ISO 1798	0.9	N/mm ²		-0.055
Elongation at break	Based on DIN EN ISO 1798	210	%		-0.042
Tear resistance	Based on DIN ISO 34-1	4.5	N/mm		
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability	-0.028
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8	[-] [-]	Steel (dry) Concrete (dry)	
Compression hardness	Based on DIN EN ISO 3386-2	63	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm	-0.018
Rebound elasticity	Based on DIN EN ISO 8307	38		dependent on thickness, test specimen $h = 25 \text{ mm}$	-0.011
Force reduction	DIN EN 14904	70	%	dependent on thickness, test specimen $h = 25 \text{ mm}$	

vibration 270 plus

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

Regufoam 270, Version 1, Release 03 2013, sheet 1 of 2 $\,$

vibration 270 plus

Vibration Isolation

Natural Frequency

2.4

Regufoam®

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.042 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

of 0.042 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.

vibration 270 plus

Modulus of Elasticity

1.2

1.0

0.8

0.4

0.2

0.0

0.00

sticity [N/mm²]

0.6

ę

10 H

5 H

Static

Regufoam[®] vibration 270 plus

0.02

2.4

Regufoam[®] vib

Long-Term Creep Test

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

0.04

Pressure [N/mm²]

0.06

0.08

Dynamic Stiffness

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load an and amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513. Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 270 plus

<u>e-</u>		

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regufoam 270, Version 1, Release 03 2013, sheet 2 of 2

vibration 300 plus

2.5

N/mm² 2.50

snid066

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

190plus

150^{plus}

Standard forms of delivery, ex warehouse Rolls

Thickness: 12 and 25 mm, special thicknesses on request Length: 5,000 mm, special lengths available Width: 1,500 mm

Stripping/Plates

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.055 N/mm² Continuous and variable loads/operating load range 0 to 0.08 N/mm² Peak loads (rare, short-term loads) 2 N/mm²

Static modulus of elasticity	Based on EN 826	0.35 - 0.58	N/mm²	Tangential modulus, see figure "Modulus of elasticity"	-0.30-
Dynamic modulus of elasticity	Based on DIN 53513	0.68 - 1.25	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"	-0.22 -
Mechanical loss factor	DIN 53513	0.18		Load-, amplitude- and frequency-dependent	
Compression set	Based on DIN EN ISO 1856	3.4	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.11 -
Tensile strength	Based on DIN EN ISO 1798	1.2	N/mm ²		-0.055
Elongation at break	Based on DIN EN ISO 1798	240	%		-0.042
Tear resistance	Based on DIN ISO 34-1	4.8	N/mm		
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability	-0.028
Sliding friction	BSW-laboratory BSW-laboratory	0.6 0.75	[-] [-]	Steel (dry) Concrete (dry)	
Compression hardness	Based on DIN EN ISO 3386-2	82	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm	-0.018
Rebound elasticity	Based on DIN EN ISO 8307	44		dependent on thickness, test specimen $h = 25 \text{ mm}$	-0.011
Force reduction	DIN EN 14904	72	%	dependent on thickness, test specimen $h = 25 \text{ mm}$	0

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

Regufoam 300, Version 1, Release 03 2013, sheet 1 of 2

vibration 300 plus

Vibration Isolation

Natural Frequency

N/mm² -2.50-066 -0.85 ŏ 81 -0.60-40 -0.45 680 0.30 ō 5 0.22 ŏ ŝ 0.11 400 -0.055 300 -0.042 270^p -0.028 220 -0.018 06 -0.011 150^p 0

2.5

Regufoam[®]

vibration 300 plus

of 0.055 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.

vibration 300 plus

2.5

Regufoam[®]

Long-Term Creep Test

Dimensions of specimens 300 mm x 300 mm x 50 mm

of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 300 plus

0	
2	5
	<u> </u>

	_
 	_
02/2/201	

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regufoam 300, Version 1, Release 03 2013, sheet 2 of 2

vibration 400 plus

2.6

snid066

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

190plus

150^{plus}

Standard forms of delivery, ex warehouse Plates

Thickness: 12 and 25 mm, special thicknesses on requestLength:1,500 mm, special lengths availableWidth:1,000 mm

Stripping/smaller sizes

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.11 N/mm² Continuous and variable loads/operating load range 0 to 0.16 N/mm² Peak loads (rare, short-term loads) up to 3 N/mm²

Static modulus of elasticity	Based on EN 826	0.6 - 1.0	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	-0.30-
Dynamic modulus of elasticity	Based on DIN 53513	1.2 - 2.0	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"	-0.22
Mechanical loss factor	DIN 53513	0.17		Load-, amplitude- and frequency-dependent	
Compression set	Based on DIN EN ISO 1856	3.9	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.11
Tensile strength	Based on DIN EN ISO 1798	1.5	N/mm ²		-0.055
Elongation at break	Based on DIN EN ISO 1798	220	%		-0.042
Tear resistance	Based on DIN ISO 34-1	6.0	N/mm		
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability	-0.028
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8	[-] [-]	Steel (dry) Concrete (dry)	
Compression hardness	Based on DIN EN ISO 3386-2	170	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm	-0.018
Rebound elasticity	Based on DIN EN ISO 8307	57		dependent on thickness, test specimen $h = 25 \text{ mm}$	-0.011
Force reduction	DIN EN 14904	68	%	dependent on thickness, test specimen $h = 25 \text{ mm}$	0

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

vibration 400 plus

Vibration Isolation

Natural Frequency

N/mm² -2.50-066 -0.85 ŏ 81 -0.60 40 -0.45 680 0.30 ō 57 0.22 ŏ ŝ -0.11 400 -0.055 300 -0.042 2 N -0.028 220F -0.018 06 -0.011 150p 0

2.6

Regufoam®

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.11 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

of 0.11 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.

vibration 400 plus

Modulus of Elasticity

vibration 400 plus

2.6

Regufoam[®]

Long-Term Creep Test

Dimensions of specimens 300 mm x 300 mm x 50 mm

Regufoam[®] vibration 400 plu 2.5 2.0 nm²] elasticity [N/I 1.5 đ lod 1.0 Static 0.5 0.0 0.00 0.05 0.10 0.15 0.20 Pressure [N/mm²]

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 400 plus

		_
1.000	10.000	100.0

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regufoam 400, Version 1, Release 03 2013, sheet 2 of 2

vibration 510 plus

2.7

Standard forms of delivery, ex warehouse Plates

Thickness: 12 and 25 mm, special thicknesses on requestLength:1,500 mm, special lengths availableWidth:1,000 mm

Stripping/smaller sizes

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.22 N/mm² Continuous and variable loads/operating load range 0 to 0.32 N/mm² Peak loads (rare, short-term loads) up to 4 N/mm²

Static modulus of elasticity	Based on EN 826	1.1 - 1.7	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	-0.30
Dynamic modulus of elasticity	Based on DIN 53513	2.2 - 3.7	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"	-0.22
Mechanical loss factor	DIN 53513	0.15		Load-, amplitude- and frequency-dependent	
Compression set	Based on DIN EN ISO 1856	4.2	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.11
Tensile strength	Based on DIN EN ISO 1798	2.4	N/mm ²		-0.05
Elongation at break	Based on DIN EN ISO 1798	240	%		-0.04
Tear resistance	Based on DIN ISO 34-1	9.3	N/mm		
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability	-0.028
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8	[-] [-]	Steel (dry) Concrete (dry)	
Compression hardness	Based on DIN EN ISO 3386-2	330	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm	-0.01
Rebound elasticity	Based on DIN EN ISO 8307	60		dependent on thickness, test specimen $h = 25 \text{ mm}$	-0.01
Force reduction	DIN EN 14904	61	%	dependent on thickness, test specimen $h = 25 \text{ mm}$	

vibration 510 plus

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

vibration 510 plus

Vibration Isolation

Natural Frequency

2.7

Regufoam[®]

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.22 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.22 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.

vibration 510 plus

vibration 510 plus

2.7

Modulus of Elasticity

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load an and amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Long-Term Creep Test

Dimensions of specimens 300 mm x 300 mm x 50 mm

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 510 plus

- 11	

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regufoam 510, Version 1, Release 03 2013, sheet 2 of 2

Regufoam®

vibration 570 plus

2.8

N/mm²

-0.85

-0.60

-0.45

snid066

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

190 plus

150^{plus}

Standard forms of delivery, ex warehouse Plates

Thickness: 12 and 25 mm, special thicknesses on requestLength:1,500 mm, special lengths availableWidth:1,000 mm

Stripping/smaller sizes

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.30 N/mm² Continuous and variable loads/operating load range 0 to 0.42 N/mm² Peak loads (rare, short-term loads) up to 4.5 N/mm²

Static modulus of elasticity	Based on EN 826	2.6 - 2.7	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	5.1 - 6.3	N/mm ²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.14	[-]	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	4.4	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	2.9	N/mm²	
Elongation at break	Based on DIN EN ISO 1798	210	%	
Tear resistance	Based on DIN ISO 34-1	14.1	N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability
Sliding friction	BSW-laboratory BSW-laboratory	0.6 0.7	[-] [-]	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	620	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	58	%	dependent on thickness, test specimen $h = 25 \text{ mm}$
Force reduction	DIN EN 14904	50	%	dependent on thickness, test specimen $h = 25 \text{ mm}$

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

vibration 570 plus

Vibration Isolation

Natural Frequency

2.8

Regufoam[®]

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.30 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

vibration 570 plus

Modulus of Elasticity

vibration 570 plus

2.8

Regufoam[®]

Long-Term Creep Test

Dimensions of specimens 300 mm x 300 mm x 50 mm

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 570 plus

/ ×	
2.0	

1 000	10.000	100 (

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regufoam 570, Version 1, Release 03 2013, sheet 2 of 2

Regufoam®

vibration 680 plus

2.9

N/mm²

-0.85

-0.60

-0.45

snid066

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

190^{plus}

150^{plus}

Standard forms of delivery, ex warehouse Plates

Thickness: 12 and 25 mm, special thicknesses on requestLength:1,500 mm, special lengths availableWidth:1,000 mm

Stripping/smaller sizes

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.45 N/mm² Continuous and variable loads/operating load range 0 to 0.62 N/mm² Peak loads (rare, short-term loads) up to 5 N/mm²

Static modulus of elasticity	Based on EN 826	2.0 - 2.9	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	-0.30
Dynamic modulus of elasticity	Based on DIN 53513	6.8 - 10.0	N/mm ²	Depending on frequency, load and thickness, see figure "dynamic stiffness"	-0.22
Mechanical loss factor	DIN 53513	0.12	[-]	Load-, amplitude- and frequency-dependent	
Compression set	Based on DIN EN ISO 1856	6.2	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.11
Tensile strength	Based on DIN EN ISO 1798	3.6	N/mm²		-0.05
Elongation at break	Based on DIN EN ISO 1798	230	%		-0.04
Tear resistance	Based on DIN ISO 34-1	18.5	N/mm		
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability	-0.028
Sliding friction	BSW-laboratory BSW-laboratory	0.6 0.7	[-] [-]	Steel (dry) Concrete (dry)	
Compression hardness	Based on DIN EN ISO 3386-2	840	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm	-0.013
Rebound elasticity	Based on DIN EN ISO 8307	58		dependent on thickness, test specimen $h = 25 \text{ mm}$	-0.01
Force reduction	DIN EN 14904	44	%	dependent on thickness, test specimen $h = 25 \text{ mm}$	

0

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

vibration 680 plus

Vibration Isolation

Natural Frequency

2.9

Regufoam[®]

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.45 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.45 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.

vibration 680 plus

Modulus of Elasticity

14

12

10 2

elasticity [N/

ę

vibration 680 plus

Regufoam[®] vibration 680 plus

Static

0.2

0.3

0.1

2.9

Regufoam[®]

Long-Term Creep Test

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of ± 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Pressure [N/mm²]

0.5

0.6

0.7

0.8

0.9

0.4

Dynamic Stiffness

0

0.0

Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 680 plus

lus		
		_
		-
		_
1,000 on of load [h]	10,000	100,000

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regufoam 570, Version 1, Release 03 2013, sheet 2 of 2

Regufoam®

vibration 740 plus

snid066

810plus

740^{plu}

680plus

570plus

510plus

400plus

300plus

270plus

220plus

190^{plus}

150^{plus}

Standard forms of delivery, ex warehouse Plates

Thickness: 12 and 25 mm, special thicknesses on requestLength:1,500 mm, special lengths availableWidth:1,000 mm

Stripping/smaller sizes

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.60 N/mm² Continuous and variable loads/operating load range 0 to 0.85 N/mm² Peak loads (rare, short-term loads) up to 6 N/mm²

Static modulus of elasticity	Based on EN 826	4.3 - 5.9	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	-0.30
Dynamic modulus of elasticity	Based on DIN 53513	7.9 - 13.0	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"	-0.22
Mechanical loss factor	DIN 53513	0.11	[-]	Load-, amplitude- and frequency-dependent	
Compression set	Based on DIN EN ISO 1856	4.8	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.11
Tensile strength	Based on DIN EN ISO 1798	4.0	N/mm ²		-0.05
Elongation at break	Based on DIN EN ISO 1798	210	%		-0.04
Tear resistance	Based on DIN ISO 34-1	19.0	N/mm		
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability	-0.02
Sliding friction	BSW-laboratory BSW-laboratory	0.6 0.7	[-] [-]	Steel (dry) Concrete (dry)	
Compression hardness	Based on DIN EN ISO 3386-2	1050	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm	-0.01
Rebound elasticity	Based on DIN EN ISO 8307	59	%	dependent on thickness, test specimen $h = 25 \text{ mm}$	-0.01
Force reduction	DIN EN 14904	39	%	dependent on thickness, test specimen $h = 25 \text{ mm}$	0

vibration 740 plus

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 250 mm x 250 mm.

vibration 740 plus

Vibration Isolation

Natural Frequency

2.10

Regufoam[®]

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.60 N/mm², dimensions of the specimens 250 mm x 250 mm x 50 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.60 N/mm², dimensions of the specimens 250 mm x 250 mm x 50 mm.

vibration 740 plus

Modulus of Elasticity

14

12

8

0

0.0

Stat

0.2

0.4

2]

of elasticity [N/I

vibration 740 plus

Regufoam[®] vibration 740 plus

2.10

Regufoam[®]

Long-Term Creep Test

Dimensions of specimens 250 mm x 250 mm x 50 mm

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 250 mm x 250 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

0.6

Pressure [N/mm²]

0.8

1.0

1.2

Dynamic Stiffness

Dimensions of specimens 250 mm x 250 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 740 plus

		_
1,000	10,000	100

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regufoam 740, Version 1, Release 03 2013, sheet 2 of 2

Regufoam®

vibration 810 plus

2.11

N/mm² 2.50

-0.85

-0.60

-0.45

snld066

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

Standard forms of delivery, ex warehouse Plates

Thickness: 12 and 25 mm, special thicknesses on request Length: 1,500 mm, special lengths available Width: 1,000 mm

Stripping/smaller sizes

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.85 N/mm² Continuous and variable loads/operating load range 0 to 1.20 N/mm² Peak loads (rare, short-term loads) up to 7 N/mm²

Static modulus of elasticity	Based on EN 826	5.8 - 7.2	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	-0.30 -
Dynamic modulus of elasticity	Based on DIN 53513	11.0 - 16.5	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"	-0.22 -
Mechanical loss factor	DIN 53513	0.10	[-]	Load-, amplitude- and frequency-dependent	
Compression set	Based on DIN EN ISO 1856	7.9	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.11 -
Tensile strength	Based on DIN EN ISO 1798	4.6	N/mm ²		-0.055
Elongation at break	Based on DIN EN ISO 1798	230	%		-0.042
Tear resistance	Based on DIN ISO 34-1	20.0	N/mm		
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability	-0.028
Sliding friction	BSW-laboratory BSW-laboratory	0.6 0.75	[-] [-]	Steel (dry) Concrete (dry)	
Compression hardness	Based on DIN EN ISO 3386-2	1241	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm	-0.018
Rebound elasticity	Based on DIN EN ISO 8307	58		dependent on thickness, test specimen $h = 25 \text{ mm}$	-0.011
Force reduction	DIN EN 14904	35	%	dependent on thickness, test specimen $h = 25 \text{ mm}$	0

190plus 1 150^{plus}

Regufoam 810, Version 1, Release 03 2013, sheet 1 of 2

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 250 mm x 250 mm.

vibration 810 plus

Vibration Isolation

Natural Frequency

2.11

Regufoam[®]

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.85 N/mm², dimensions of the specimens 250 mm x 250 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.85 N/mm², dimensions of the specimens 250 mm x 250 mm x 25 mm.

vibration 810 plus

vibration 810 plus

2.11

Modulus of Elasticity

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.10 mm. Dimensions of specimens 250 mm x 250 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Dimensions of specimens 250 mm x 250 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Long-Term Creep Test

Dimensions of specimens 250 mm x 250 mm x 50 mm

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 810 plus

2	1	1
۷.	L,	ц

s		
1.000	10.000	100.0

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regufoam 810, Version 1, Release 03 2013, sheet 2 of 2

Regufoam®

vibration 990 plus

2.12

0 6 6

810plus

740plus

680plus

570plus

510plus

400plus

300plus

270plus

220plus

190plus

150^{plus}

Standard forms of delivery, ex warehouse Plates

Thickness: 12 and 25 mm, special thicknesses on requestLength:1,500 mm, special lengths availableWidth:1,000 mm

Stripping/smaller sizes

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

2.5 N/mm² Continuous and variable loads/operating load range 0 to 3.5 N/mm² Peak loads (rare, short-term loads) up to 8.0 N/mm²

Static modulus of elasticity	Based on EN 826	20.0 - 78.0	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	-0.30 -
Dynamic modulus of elasticity	Based on DIN 53513	41.0 - 160.0	N/mm ²	Depending on frequency, load and thickness, see figure "dynamic stiffness"	-0.22
Mechanical loss factor	DIN 53513	0.09		Load-, amplitude- and frequency-dependent	
Compression set	Based on DIN EN ISO 1856	8.6	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.11
Tensile strength	Based on DIN EN ISO 1798	6.9	N/mm ²		-0.055
Elongation at break	Based on DIN EN ISO 1798	190	%		-0.042
Tear resistance	Based on DIN ISO 34-1	34.5	N/mm		
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability	-0.028
Sliding friction	BSW-laboratory BSW-laboratory	0.5 0.6	[-] [-]	Steel (dry) Concrete (dry)	
Compression hardness	Based on DIN EN ISO 3386-2	3640	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm	-0.018
Rebound elasticity	Based on DIN EN ISO 8307	55		dependent on thickness, test specimen $h = 25 \text{ mm}$	-0.011
Force reduction	DIN EN 14904	20	%	dependent on thickness, test specimen $h = 25 \text{ mm}$	

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 125 mm x 125 mm.

vibration 990 plus

Vibration Isolation

Natural Frequency

N/mm² -0.85 ō 81 -0.60-740^p -0.45 680 -0.30ō 57(0.22 ö 51 0.11 400^p -0.055 300p -0.042 270p -0.028 220F 0.018 190p -0.011 150p 0

2.12

Regufoam[®]

vibration 990 plus

Influence of Amplitude

In order to get information of changes in mechanical loss or dynamic stiffness due to changes in amplitudes please ask technical staff of BSW.

Modulus of Elasticity

vibration 990 plus

2.12

Regufoam[®]

Long-Term Creep Test

Dimensions of specimens 125 mm x 125 mm x 50 mm

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.10 mm. Dimensions of specimens 125 mm x 125 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load an and amplitude of \pm 0.10 mm. Dimensions of specimens 125 mm x 125 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 990 plus

lus		
1,000	10,000	100,000

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regufoam 990, Version 1, Release 03 2013, sheet 2 of 2

- on your wavelength

Regupol®

Vibration Isolation Technical Details

Regupol[®] in: Palaisquartier Frankfurt, Imtech Arena Hamburg, Mainova Headof-fice Frankfurt

Cover Rp, Version 1, Release 03 2013, sheet 1 of 1

Downloads

www.bswvibration-technology. com

All Tools for the Download

You will find all documents and information which you need for making a decision, for calculation as well as the installation and application of the BSW vibration technology products, at **www. bsw-vibration-technology.com**. In a matter of seconds you can download technical datasheets, certificates and installation instructions, all in the required file formats.

Up to date information is provided on our website and in the PDF versions of this catalogue. The PDF versions are available for download on our website.

The website **www.bsw-vibration-technology.com** serves mainly as a planning basis for architectural acoustics and construction engineers. You must register to use the technical documents. BSW will send you your user name and password right away. Since being put up in January 2010, this website already has several hundred registered users.

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 200

Standard forms of delivery, ex warehouse

Rolls Thickness:

Length: Width:

Stripping/Plates

On request Die-cutting, water-jet cutting, self-adhesive versions possible

17 mm, dimpled

1,250 mm

10,000 mm, special lengths available

Continuous static load

0.02 N/mm² Continuous and variable loads/operating load range 0.05 N/mm²

					-1.50
Static modulus of elasticity	Based on EN 826	0.02 - 0.08	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	
Dynamic modulus of elasticity	Based on DIN 53513	0.05 - 0.38	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"	-0.80
Mechanical loss factor	DIN 53513	0.22		Load-, amplitude- and frequency-dependent	-0.30
Compression set	Based on DIN EN ISO 1856	3.1	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.15
Tensile strength	Based on DIN EN ISO 1798	0.12	N/mm ²		
Elongation at break	Based on DIN EN ISO 1798	40	%		-0.12
Tear resistance	Based on DIN ISO 34-1	1.0	N/mm		
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability	-0.10
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8	[-] [-]	Steel (dry) Concrete (dry)	-0.05
Compression hardness	Based on DIN EN ISO 3386-2	14	kPa	Compressive stress at 25 % deformation	
Rebound elasticity	Based on DIN EN ISO 8307	14	%	dependent on thickness, test specimen $h = 25 \text{ mm}$	-0.02
Force reduction	DIN EN 14904	73	%	dependent on thickness, test specimen $h = 25 \text{ mm}$	
L	<u> </u>				0

200

N/mm²

1000

800

Regupol 200, Version 1, Release 03 2013, sheet 1 of 2

vibration 200

Load Ranges

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocitiy of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

N/mm²

1000

800

550

480

450

400

300

1.50

0.80

0.30

0.15

0.12

0.10

0.05

- 0.02

vibration 200

Vibration Isolation

Natural Frequency

3.1

Regupol®

vibration 200

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.011 N/mm², dimensions of the specimens 300 mm x 300 mm x 51 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.011 N/mm², dimensions of the specimens 300 mm x 300 mm x 51 mm.

3.1

vibration 200

Modulus of Elasticity

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 34 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 34 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Regupol[®]

Long-Term Creep Test

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

3.1

vibration 200

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regupol 200, Version 1, Release 03 2013, sheet 2 of 2

vibration 300

Standard forms of delivery, ex warehouse

Rolls Thickness:

Length: Width:

Stripping/Plates

On request Die-cutting, water-jet cutting, self-adhesive versions possible

17 mm, dimpled

1,250 mm

10,000 mm, special lengths available

Continuous static load

 $0.05\ \text{N/mm}^2$ Continuous and variable loads/operating load range $0.08\ \text{N/mm}^2$

Static modulus of elasticity	Based on EN 826	0.1 - 0.2	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	N/mm² -1.50	
Dynamic modulus of elasticity	Based on DIN 53513	0.2 - 1.4	N/mm ²	Depending on frequency, load and thickness, see figure "dynamic stiffness"		1000
Mechanical loss factor	DIN 53513	0.18		Load-, amplitude- and frequency-dependent	-0.80	
Compression set	Based on DIN EN ISO 1856	1.6	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.30	80(
Tensile strength	Based on DIN EN ISO 1798	0.30	N/mm ²		-0.15	550
Elongation at break	Based on DIN EN ISO 1798	55	%			80
Tear resistance	Based on DIN ISO 34-1		N/mm		-0.12	4
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability		450
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8		Steel (dry) Concrete (dry)	-0.10	
Compression hardness	Based on DIN EN ISO 3386-2	50	kPa	Compressive stress at 25 % deformation	-0.05	400
Rebound elasticity	Based on DIN EN ISO 8307	10	%	dependent on thickness, test specimen $h = 51 \text{ mm}$		300
Force reduction	DIN EN 14904	73	%	dependent on thickness, test specimen $h = 51 \text{ mm}$	-0.02	Г
Ozone resistance	DIN EN ISO 17025	Cracking stage 0	[-]		0	200

Load Ranges

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocitiy of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

200

0

vibration 300

Vibration Isolation

Natural Frequency

N/mm² 1.50

- 0.80

- 0.30

-0.15

-0.12

-0.10

0.05

- 0.02

0

000

800

550

480

50

400

300

200

Regupol®

vibration 300

Influence of Amplitude

of 0.05 N/mm², dimensions of the specimens 300 mm x 300 mm x 51 mm.

vibration 300

Modulus of Elasticity

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 34 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 34 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

3.2

Regupol[®] vib

Long-Term Creep Test

Dimensions of specimens 300 mm x 300 mm x 51 mm

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 300

۱m

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regupol 300, Version 1, Release 03 2013, sheet 2 of 2

vibration 400

Standard forms of delivery, ex warehouse

Rolls Thickness: Length:

Width:

15 mm, dimpled 10,000 mm, special lengths available 1,250 mm

Stripping/Plates

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

 $0.10\ \text{N/mm}^2$ Continuous and variable loads/operating load range $0.15\ \text{N/mm}^2$

Static modulus of elasticity	Based on EN 826	0.3 - 0.55	N/mm²	Tangential modulus, see figure "Modulus of elasticity"	N/mm² -1.50	
Dynamic modulus of elasticity	Based on DIN 53513	0.9 - 2.4	N/mm ²	Depending on frequency, load and thickness, see figure "dynamic stiffness"		1000
Mechanical loss factor	DIN 53513	0.17		Load-, amplitude- and frequency-dependent	-0.80	
Compression set	Based on DIN EN ISO 1856	2.1	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.30	80(
Tensile strength	Based on DIN EN ISO 1798	0.34	N/mm ²		-0.15	550
Elongation at break	Based on DIN EN ISO 1798	55	%			80
Tear resistance	Based on DIN ISO 34-1	3.2	N/mm		-0.12	4
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability		450
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8		Steel (dry) Concrete (dry)	-0.10	
Compression hardness	Based on DIN EN ISO 3386-2	180	kPa	Compressive stress at 25 % deformation	-0.05	400
Rebound elasticity	Based on DIN EN ISO 8307	22	%	dependent on thickness, test specimen $h = 60 \text{ mm}$		300
Force reduction	DIN EN 14904	73	%	dependent on thickness, test specimen $h = 60 \text{ mm}$	-0.02	
Ozone resistance	DIN EN ISO 17025	Cracking stage 0	[-]		0	200

Regupol 400, Version 1, Release 03 2013, sheet 1 of 2

Load Ranges

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocitiy of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

N/mm²

1000

800

550

480

450

400

1.50

0.80

0.30

0.15

0.12

0.10

0.05

vibration 400

Vibration Isolation

Natural Frequency

3.3

N/mm² 1.50

- 0.80

- 0.30

-0.15

-0.12

- 0.10 -

- 0.05

- 0.02

0

000

800

550

480

50

400

300

200

Regupol®

vibration 400

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.10 N/mm², dimensions of the specimens 300 mm x 300 mm x 60 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

of 0.10 N/mm², dimensions of the specimens 300 mm x 300 mm x 60 mm.

vibration 400

3.3

Modulus of Elasticity

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 45 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 45 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Regupol®

Long-Term Creep Test

Dimensions of specimens 300 mm x 300 mm x 60 mm

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 400

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regupol 400, Version 1, Release 03 2013, sheet 2 of 2

vibration 450

Standard forms of delivery, ex warehouse

50 mm, special thickness available
1,000 mm
500 mm

Continuous static load

0.12 N/mm²

Continuous and variable loads/operating load range $0.18\ \text{N/mm}^2$

Static modulus of elasticity	Based on EN 826	0.2 - 0.4	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	N/mn -1.50 -	n²
Dynamic modulus of elasticity	Based on DIN 53513	0.45 - 2.7	N/mm ²	Depending on frequency, load and thickness, see figure "dynamic stiffness"		1000
Mechanical loss factor	DIN 53513	0.2		Load-, amplitude- and frequency-dependent	-0.80-	
Compression set	Based on DIN EN ISO 1856	4.1	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.30 -	80(
Tensile strength	Based on DIN EN ISO 1798	0.15	N/mm²		-0.15-	550
Elongation at break	Based on DIN EN ISO 1798	40	%			80
Tear resistance	Based on DIN ISO 34-1	1.9	N/mm		-0.12-	4
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability		450
Sliding friction	BSW-laboratory BSW-laboratory	0.5 0.6		Steel (dry) Concrete (dry)	-0.10-	
Compression hardness	Based on DIN EN ISO 3386-2	83	kPa	Compressive stress at 25 % deformation test specimen $h = 50 \text{ mm}$	-0.05-	40(
Rebound elasticity	Based on DIN EN ISO 8307	42.7	%	dependent on thickness, test specimen $h = 50 \text{ mm}$		300
Force reduction	DIN EN 14904	74	%	dependent on thickness, test specimen $h = 50 \text{ mm}$	-0.02-	
Ozone resistance	DIN EN ISO 17025	Cracking stage 0	[-]		0	20(

Regupol 450, Version 1, Release 03 2013, sheet 1 of 2 $\,$

3.4

vibration 450

3.4

Load Ranges

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocitiy of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

vibration 450

Vibration Isolation

Natural Frequency

Regupol® vibration 450 on a rigid base. Dimensions of test specimens 300 mm x 300 mm.

Regupol®

vibration 450

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.10 N/mm², dimensions of the specimens 300 mm x 300 mm x 50 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

of 0.10 N/mm², dimensions of the specimens 300 mm x 300 mm x 50 mm.

Modulus of Elasticity

4.0

3.5

3.0

[2 2.5

[N/r

city 2.0

IS O 1.5

1.0

0.5

0.0

0.00

0.02

0.04

Regupol[®] vibration 450

vibration 450

3.4

Regupol®

Long-Term Creep Test

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 50 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

0.06

Pressure [N/mm²]

40 H

Static

0.10

0.12

0.08

Dimensions of specimens 300 mm x 300 mm x 50 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

vibration 450

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regupol 450, Version 1, Release 03 2013, sheet 2 of 2

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 480

Standard forms of delivery, ex warehouse

Rolls Thickness: 15 mm Length: Width:

10,000 mm, special length available 1,250 mm

Stripping/Plates

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.15 N/mm² Continuous and variable loads/operating load range 0.25 N/mm²

Static modulus of elasticity	Based on EN 826	0.25 - 0.8	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	N/mr -1.50	n²
Dynamic modulus of elasticity	Based on DIN 53513	1.2 - 3.3	N/mm ²	Depending on frequency, load and thickness, see figure "dynamic stiffness"		1000
Mechanical loss factor	DIN 53513	0.17		Load-, amplitude- and frequency-dependent	-0.80 -	
Compression set	Based on DIN EN ISO 1856	3.0	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.30 -	80(
Tensile strength	Based on DIN EN ISO 1798	0.36	N/mm ²		-0.15-	550
Elongation at break	Based on DIN EN ISO 1798	55	%			80
Tear resistance	Based on DIN ISO 34-1	4.5	N/mm		-0.12-	4
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability		450
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8		Steel (dry) Concrete (dry)	-0.10-	
Compression hardness	Based on DIN EN ISO 3386-2	220	kPa	Compressive stress at 25 % deformation test specimen $h = 60 \text{ mm}$	-0.05-	400
Rebound elasticity	Based on DIN EN ISO 8307	31	%	dependent on thickness, test specimen $h = 60 \text{ mm}$		300
Force reduction	DIN EN 14904	72	%	dependent on thickness, test specimen $h = 60 \text{ mm}$	-0.02-	
Ozone resistance	DIN EN ISO 17025	Cracking stage 0	[-]			200

3.5

Regupol 480, Version 1, Release 03 2013, sheet 1 of 2

vibration 480

Load Ranges

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocitiy of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

0.05

- 0.02

0

300

200

N/mm²

1.50

vibration 480

Vibration Isolation

Natural Frequency

Regupol® vibration 480 on a rigid base. Dimensions of test specimens 300 mm x 300 mm.

3.5

Regupol®

vibration 480

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.10 N/mm², dimensions of the specimens 300 mm x 300 mm x 60 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

of 0.10 N/mm², dimensions of the specimens 300 mm x 300 mm x 60 mm.

vibration 480

Modulus of Elasticity

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 45 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 45 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

3.5

Regupol[®] vib

Long-Term Creep Test

Dimensions of specimens 300 mm x 300 mm x 60 mm

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 480

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regupol 480, Version 1, Release 03 2013, sheet 2 of 2

vibration 550

Standard forms of delivery, ex warehouse

RollsThickness:15 mmLength:10,000Width:1,250 r

15 mm 10,000 mm, special length available 1,250 mm

Stripping/Plates

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

 $0.30\ \text{N/mm}^2$ Continuous and variable loads/operating load range $0.40\ \text{N/mm}^2$

Static modulus of elasticity	Based on EN 826	0.5 - 1.7	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	N/mn -1.50 -	n²
Dynamic modulus of elasticity	Based on DIN 53513	2.5 - 7.0	N/mm ²	Depending on frequency, load and thickness, see figure "dynamic stiffness"		1000
Mechanical loss factor	DIN 53513	0.16		Load-, amplitude- and frequency-dependent	-0.80-	
Compression set	Based on DIN EN ISO 1856	3.4	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.30-	80(
Tensile strength	Based on DIN EN ISO 1798	0.6	N/mm ²		-0.15-	550
Elongation at break	Based on DIN EN ISO 1798	65	%			80
Tear resistance	Based on DIN ISO 34-1	5.0	N/mm		-0.12-	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability		450
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8		Steel (dry) Concrete (dry)	-0.10-	
Compression hardness	Based on DIN EN ISO 3386-2	415	kPa	Compressive stress at 25 % deformation test specimen $h = 60 \text{ mm}$	-0.05-	400
Rebound elasticity	Based on DIN EN ISO 8307	36	%	dependent on thickness, test specimen $h = 60 \text{ mm}$		300
Force reduction	DIN EN 14904	65	%	dependent on thickness, test specimen $h = 60 \text{ mm}$	-0.02-	\square
Ozone resistance	DIN EN ISO 17025	Cracking stage 0	[-]		0	200

3.6

3.6

Load Ranges

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocitiy of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

vibration 550

Vibration Isolation

Natural Frequency

3.6

N/mm² 1.50

- 0.80

- 0.30

-0.15

-0.12

-0.10

- 0.05

0.02

0

000

800

550

480

50

400

300

200

Regupol®

vibration 550

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.25 N/mm², dimensions of the specimens 300 mm x 300 mm x 60 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

of 0.25 N/mm², dimensions of the specimens 300 mm x 300 mm x 60 mm.

Regupol 550, Version 1, Release 03 2013, sheet 2 of 2

vibration 550

Modulus of Elasticity

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 45 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 45 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Regupol[®] v

Long-Term Creep Test

Dimensions of specimens 300 mm x 300 mm x 60 mm

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 550

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regupol 550, Version 1, Release 03 2013, sheet 2 of 2

vibration 800

Standard forms of delivery, ex warehouse

Rolls

Thickness: Length: Width: 10 mm 8,000 mm, special length available 1,250 mm

Stripping/Plates

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

 $0.80\ \text{N/mm}^2$ Continuous and variable loads/operating load range $1.00\ \text{N/mm}^2$

Static modulus of elasticity	Based on EN 826	1.2 - 2.9	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	N/mr -1.50 -	n²
Dynamic modulus of elasticity	Based on DIN 53513	3.6 - 18.2	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"		1000
Mechanical loss factor	DIN 53513	0.18		Load-, amplitude- and frequency-dependent	-0.80-	
Compression set	Based on DIN EN ISO 1856	3.7	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.30-	800
Tensile strength	Based on DIN EN ISO 1798	0.9	N/mm ²		-0.15-	550
Elongation at break	Based on DIN EN ISO 1798	70	%			80
Tear resistance	Based on DIN ISO 34-1	8.0	N/mm		-0.12-	4
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability		450
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8		Steel (dry) Concrete (dry)	-0.10-	
Compression hardness	Based on DIN EN ISO 3386-2	545	kPa	Compressive stress at 25 % deformation test specimen $h = 60 \text{ mm}$	-0.05-	400
Rebound elasticity	Based on DIN EN ISO 8307	30	%	dependent on thickness, test specimen $h = 60 \text{ mm}$		300
Force reduction	DIN EN 14904	61	%	dependent on thickness, test specimen $h = 60 \text{ mm}$	-0.02-	\uparrow
Ozone resistance	DIN EN ISO 17025	Cracking stage 0	[-]			200

Regupol 800, Version 1, Release 03 2013, sheet 1 of 2

3.7

Load Ranges

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocitiy of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 250 mm x 250 mm.

vibration 800

Vibration Isolation

Natural Frequency

3.7

Regupol®

vibration 800

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.80 N/mm², dimensions of the specimens 250 mm x 250 mm x 60 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

of 0.80 N/mm², dimensions of the specimens 250 mm x 250 mm x 60 mm.

vibration 800

Modulus of Elasticity

Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 250 mm x 250 mm x 40 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 250 mm x 250 mm x 40 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513. 3.7

Regupol[®] vi

Long-Term Creep Test

Dimensions of specimens 250 mm x 250 mm x 60 mm

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 800

ım

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regupol 800, Version 1, Release 03 2013, sheet 2 of 2

vibration 1000

Standard forms of delivery, ex warehouse

Rolls

Thickness: Length: Width: 10 mm 8,000 mm, special length available 1,250 mm

Stripping/Plates

On request Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

 $1.50\ \text{N/mm}^2$ Continuous and variable loads/operating load range $1.75\ \text{N/mm}^2$

Static modulus of elasticity	Based on EN 826	4.0 - 11.0	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"	N/m	m²
Dynamic modulus of elasticity	Based on DIN 53513	15.0 - 45.0	N/mm ²	Depending on frequency, load and thickness, see figure "dynamic stiffness"		1000
Mechanical loss factor	DIN 53513	0.16		Load-, amplitude- and frequency-dependent	-0.80	
Compression set	Based on DIN EN ISO 1856	4.9	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs	-0.30	800
Tensile strength	Based on DIN EN ISO 1798	2.3	N/mm ²		-0.15	550
Elongation at break	Based on DIN EN ISO 1798	110	%			80
Tear resistance	Based on DIN ISO 34-1	15.0	N/mm		-0.12	4
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability		450
Sliding friction	BSW-laboratory BSW-laboratory	0.6 0.7	[-] [-]	Steel (dry) Concrete (dry)	-0.10	
Compression hardness	Based on DIN EN ISO 3386-2	1650	kPa	Compressive stress at 25 % deformation test specimen $h = 60 \text{ mm}$	-0.05 [,]	400
Rebound elasticity	Based on DIN EN ISO 8307	37	%	dependent on thickness, test specimen $h = 60 \text{ mm}$		300
Force reduction	DIN EN 14904	45	%	dependent on thickness, test specimen $h = 60 \text{ mm}$	-0.02	\uparrow
Ozone resistance	DIN EN ISO 17025	Cracking stage 0	[-]			200

Regupol 1000, Version 1, Release 03 2013, sheet 1 of 2 $\,$

Load Ranges

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocitiy of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 200 mm x 200 mm.

N/mm²

1000

1.50

0.80

vibration 1000

Vibration Isolation

Natural Frequency

N/mm² 1.50

- 0.80

- 0.30

-0.15

-0.12

-0.10

0.05

0.02

0

1000

800

550

480

50

400

300

200

Regupol®

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 1.50 N/mm², dimensions of the specimens 200 mm x 200 mm x 60 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

of 1.50 N/mm², dimensions of the specimens 200 mm x 200 mm x 60 mm.

vibration 1000

vibration 1000

Modulus of Elasticity

of \pm 0.25 mm. Dimensions of specimens 200 mm x 200 mm x 40 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Dimensions of specimens 200 mm x 200 mm x 40 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Regupol®

3.8

Long-Term Creep Test

Dimensions of specimens 200 mm x 200 mm x 60 mm

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

vibration 1000

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied. All given values are approximate values.

Regupol 1000, Version 1, Release 03 2013, sheet 2 of 2

0 your wavelength

Regupol[®] | Regufoam[®]

Impact Sound Insulation Technical Details

BSW impact sound insulation under screed in: Silvertower Frankfurt, Hesse State Parliament Wiesbaden, CINEMAGNUM Nuremberg, Opera House Frankfurt

Cover ISI, Version 1, Release 03 2013, sheet 1 of 1

Regupol[®] | **Regufoam[®]** Downloads

All Tools for the Download

You will find all documents and information which you need for making a decision, for calculation as well as the installation and application of the BSW vibration technology products, at **www. bsw-vibration-technology.com**. In a matter of seconds you can download technical datasheets, certificates and installation instructions, all in the required file formats.

Up to date information is provided on our website and in the PDF versions of this catalogue. The PDF versions are available for download on our website.

The website **www.bsw-vibration-technology.com** serves mainly as a planning basis for architectural acoustics and construction engineers. You must register to use the technical documents. BSW will send you your user name and password right away. Since being put up in January 2010, this website already has several hundred registered users.

Contact: Steffen Blecher, Phone: +49 2751 803-126 • s.blecher@berleburger.de; Florian Sassmannshausen, Phone: +49 2751 803-230 • f.sassmannshausen@berleburger.de • Downloads at www.bsw-vibration-technology.com

sound 47

Impact Sound Insulation Under Screed

Largely rot-, moisture-, age- and deformation-resistant, permanently elastic

Material PU-bonded rubber fibres

Standard delivery form in rolls of 15 m² each, 13,040 x 1,150 x 8 mm

Temperature resistance from –20 °C to +80 °C

Colour Anthracite

Regupol® sound 47, dimpled on underside

Physical Data

weighted impact noise reduction as per ISO 717-2 $\Delta L_{w} \geq 20 \text{ dB}$

Mean value for dynamic rigidity as per DIN EN 29052-1 s' ≈ 47 MN/m³

Thermal conductivity $\lambda = 0.075 \text{ W/mK}$

Thermal resistance $R = 0.1031 \text{ m}^2\text{K/W}$

Fire classification as per DIN 4102/DIN EN 13501-1 B2 / Class E

Maximum traffic load up to 3,000 kg/m²

Compressibility as per DIN EN 12431 c ≤ 1.0 mm

National technical approval no.: Z-23.21-1694 European technical approval no.: ETA-10-0056

Compressive	Settlement	Bedding modulus
stress (N/mm ²)	(mm)	(MN/mm ³)
0.0015 0.0059 0.0118 0.0206 0.0294 0.0118	0 0.476 0.863 1.284 1.605 1.066	12.0 14.0 16.0 18.0 11.0

Performance and evaluation of test as per DIN 18134, sample measurements and testing facility as per DIN EN 826. Tested by Technical University Dresden.

Regupol® sound 47 Regupol® sound 17 Regupol® sound 12 Regufoam® sound 10

sound 47, Version 1, Release 03 2013, sheet 1 of 1

sound 47

Impact Noise Reduction Regupol® sound 47 as per ISO 140-8

Measurement of the impact noise reduction, provided by a floor covering on a solid standard floor under test conditions

Description of the test object

- 68 mm concrete screed
- 0.20 mm PE foil
- 8 mm screed insulation mat, **Regupol® sound 47** (dimpled on one side)
- mean value of dynamic rigidity as per DIN EN 29052-1, s' \thickapprox 47 MN/m³
- 8 mm perimeter screed strip (foamed PE foil)
- 140 mm raw ceiling

Basis weight	approx. 135 kg/m ²
Setting time	552 h
Air temperature in the test rooms	21 °C
Humidity in the test rooms	56 %
Volume of reception room	54.2 m ³

Impact noise reduction improvement as per ISO 717-2

 $\Delta L_{w} \geq 20 \text{ dB} \qquad C_{I,\Delta} = -12 \text{ dB} \qquad C_{I,r} = 1 \text{ dB}$ The results refer only to the tested structure.

Tested by the MPA (German materials testing agency).

Test for obtaining the national technical approval

on 05.12.2005 MPA NRW 44285 Dortmund Germany Phone +49 (0)231 45020 Fax +49 (0)231 458 549

We will be pleased to send you the complete test report no. 420001705 upon request.

Frequency Hz	L _{n,} raw ceiling without test set-up ¹ ∕₃ octave dB	L _{n,} raw ceiling with test set-up ⅓ octave dB	∆L ⅓ octave dB
50	70.2	61.7	8.5
63	64.2	58.7	5.5
80	66.4	61.7	4.7
100	58.9	57.4	1.5
N 125	64.3	63.2	1.1
	66.5	67.5	-1.0
^K 200	68.8	66.1	2.7
ອີ່ 250	69.0	63.0	6.0
<u>e 1315</u>	68.9 60.5	60.0 50.4	8.9
÷ 500	09.5 70.1	55.4	10.1
e a 1 630	70.1 69.9	53.6 53.5	14.5
	69.7	50.3	19.4
a 1.000	70.8	47.5	23.3
ي الم	71.3	43.9	27.4
2 1,600	71.4	41.7	29.7
₹ 2,000	71.0	39.3	31.7
^{بة} 2,500	70.9	36.8	34.1
<u>3,150</u>	70.0	33.7	36.3
4,000	68.6	30.6	38.0
5,000	65.9	25.9	40.0

4.1

sound 17

Impact Sound Insulation Under Screed

Largely rot-, moisture-, age- and deformation-resistant, permanently elastic

Material PU-bonded rubber fibres

Standard delivery form 1,200 x 1,000 x 17 mm, 60 m² per pallet

Temperature resistance from -20 °C to +80 °C

Colour Anthracite

Upper side laminated with green aluminium foil.

Physical Data

weighted impact noise reduction as per ISO 717-2 $\Delta L_w \ge 26 \text{ dB}$

Mean value for dynamic rigidity as per DIN EN 29052-1 s' $\approx 17 \text{ MN/m}^3$

Thermal conductivity $\lambda = 0.08 \text{ W/mK}$

Thermal resistance $R = 0.2162 \text{ m}^2\text{K/W}$

Fire classification according to DIN 4102/DIN EN 13501-1 B2 / Class E

Maximum traffic load up to 5,000 kg/m²

Compressiblility as per DIN EN 12431 c \leq 2.0 mm

National technical approval no.: Z-23.21-1741 European technical approval no.: ETA-10-0057

 ${\rm Regupol}^{\circledast}$ sound 17, dimpled on underside

Compressive	Settlement	Bedding modulus
stress (N/mm ²)	(mm)	(N/mm³)
0.0025	0	0
0.0098	1.4	7.0
0.0196	2.6	8.0
0.0343	3.9	9.0
0.0490	4.7	10.0
0.0196	3.2	6.0

Performance and evaluation of test as per DIN 18134, sample measurements and testing facility as per DIN EN 826. Tested by Technical University Dresden.

Regupol® sound 47 Regupol® sound 17 Regupol® sound 12 Regufoam® sound 10

sound 17, Version 1, Release 03 2013, Blatt 1 von 1

sound 17

Impact Noise Reduction Regupol[®] sound 17 as per ISO 140-8

Measurement of the impact noise reduction, provided by a floor covering on a solid standard floor under test conditions

Description of the test object

- 28 mm cast stone
- approx. 4 mm thin-set mortar
- approx. 90 mm screed
- 0.25 mm PE foil
- 17 mm screed insulation mat, **Regupol® sound 17**, single layer
- mean value of dynamic rigidity as per DIN EN 29052-1, s' \thickapprox 17 MN/m³
- length-related flow resistance as per EN 29053:
- $-r = 8088 \text{ Pa s/m}^2$
- 150 mm reinforced concrete
- perimeter strip made of mineral fibreboards, 15 mm thick
- mass per unit area of the floor covering 240 kg/m²

Mass per unit area:	600 kg/m²
Test surface area:	16.9 m ²
Test rooms – volume of reception room:	$V_{p} = 51.3 \text{ m}^{3}$
Condition:	empty
Type:	laboratory

Impact noise reduction improvement as per ISO 717-2

∆L _w ≥ 26 dB	$C_{_{I,\Delta}}=$ -13 dB	$\Delta L_{lin} = 13 \text{ dB}$
The results refer only t	o the tested structure.	

Qualification test I for DIN 4109 on 05.05.1999

Publication of the results is authorised by the Ingenieurgesellschaft für Technische Akustik mbH Max-Planck-Ring 49 65205 Wiesbaden Germany Phone +49 (0)6122 956 10 Fax +49 (0)6122 956 161

We will be pleased to send you the complete test report no. 0070.99-P 57 upon request.

Frequency Hz	L _{n.} raw ceiling ¹ ⁄3 octave dB	∆L ⅓ octave dB
100	57.5	2.2
125	60.3	2.1
160	60.7	10.1
200	61.6	9.1
250	61.5	14.6
315	63.8	17.1
400	62.1	18.8
500	63.3	23.8
630	63.3	25.9
800	64.4	28.9
1,000	65.6	29.8
1,250	66.4	34.2
1,600	66.7	39.5
2,000	66.7	47.1
2,500	66.6	51.9
3,150	67.2	56.0

sound 12

Impact Sound Insulation Under Screed

Largely rot-, moisture-, age- and deformation-resistant, permanentley elastic, but protect against large volumes of water.

Material PUR-Elastomerverbund

Standard delivery form 1,200 x 1,000 x 17 mm, 60 m² per pallet

Temperature resistance from -20 °C to +80 °C

Colour brown-beige, dark particles

Upper side laminated with green aluminium foil.

Physical Data

weighted impact noise reduction as per ISO 717-2 $\Delta L_w \ge 33 \text{ dB}$

Mean value for dynamic rigidity as per DIN EN 29052-1 s' $\approx 12 \text{ MN/m}^3$

Thermal conductivity $\lambda = 0.0063 \text{ W/mK}$

Thermal resistance $R = 0.289 \text{ m}^2\text{K/W}$

Fire classification according to DIN 4102/DIN EN 13501-1 B 2 / Class E

Maximum traffic load up to 3,000 kg/m²

Compressibility as per DIN EN 12431 c \leq 2.0 mm

National technical approval and European technical approval are submitted.

Regupol[®] sound 12, dimpled on underside

Compressive	Settlement	Bedding modulus
stress (N/mm ²)	(mm)	(MN/mm³)
0.005	2.1	2.8
0.010	3.2	3.1
0.020	4.5	4.5
0.025	4.9	5.1
0.030	5.3	5.7
0.020	4.7	4.3

Performance and evaluation of test as per DIN 18134, sample measurements and testing facility as per DIN EN 826.

Regupol® sound 47 Regupol® sound 17 Regupol® sound 12 Regufoam® sound 10

sound 12, Version 1, Release 03 2013, sheet 1 of 1

sound 12

Impact Noise Reduction Regupol® sound 12 as per ISO 10140-3

20.0 m²

Measurement of the impact noise reduction, provided by a floor covering on a solid standard floor under test conditions

Description of the test object

- 160 mm raw ceiling
- 17 mm Regupol® sound 12 screed insulation mat
- 0.25 mm PE-foil
- 80 mm screed
- total thickness 255 mm
- mean value of dynamic rigidity as per
- DIN EN 29052-1, s' ≈ 12 MN/m³

Mass per unit area :	581.6 kg/m ²
Test surface area:	4.0 x 5.0 =
Volume of test rooms:	$V_{s} = 54 \text{ m}^{3}$,
	$V_{r}^{3} = 62 \text{ m}^{3}$
Air temperature in test rooms:	2ı́ °C
Water curing:	> 21 days

Impact noise reduction improvement as per ISO 717-2

 $\Delta L_{w} \ge 33 \text{ dB}$ $C_{I,\Delta} = -12 \text{ dB}$ The results refer only to the tested structure.

Qualification test for DIN 4109 on 02.08.2012

Publication of the results is authorised by ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 83026 Rosenheim Germany Phone +49 (0)8031 261-0 Fax +49 (0)8031 261-290

We will be pleased to send you the complete test report no. 12-001691-PR01 (PBX5.1-F03-04-de-01) upon request.

Frequency Hz	L _{n,} raw ceiling ⅓ octave dB	∆L ⅓ octave dB
100	66.1	11.7
125	62.8	11.5
160	68.1	15.3
200	69.0	18.5
250	70.0	23.3
315	71.4	27.0
400	70.4	29.0
500	71.4	31.6
630	71.2	34.6
800	72.4	39.0
1000	72.0	42.3
1250	72.6	46.9
1600	72.9	50.5
2000	72.0	54.8
2500	71.6	58.7
3150	70.9	63.0

4.3

Regufoam[®]

sound 10

Impact Sound Insulation Under Screed

Largely rot-, moisture-, age- and deformation-resistant, permanentley elastic, but protect against large volumes of water.

Material

Mixed-cell polyurethane foam

Standard delivery form 1,500 x 1,100 x 17 mm, 198 m² per pallet

Temperature resistance from –20 °C to +80 °C

Colour light blue

Regufoam® sound 10, dimpled on underside

Physical Data

weighted impact noise reduction as per ISO 717-2 $\Delta L_{w} \geq 34 \text{ dB}$

Mean value for dynamic rigidity as per DIN EN 29052-1 s' ≈ 10 MN/m³

Thermal conductivity $\lambda = 0.046 \text{ W/mK}$

Thermal resistance $R = 0.331 \text{ m}^2\text{K/W}$

Fire classification according to DIN 4102/DIN EN 13501-1 B 2 / Class E

Maximum traffic load up to 2,500 kg/m²

Compressibility as per DIN EN 12431

c ≤ 2.0 mm, deformation-resistant, compressible volume

National technical approval and European technical approval are submitted.

Compressive	Settlement	Bedding modulus
stress (N/mm ²)	(mm)	(MN/m ³)
0.005	3.4	1.5
0.010	4.9	2.1
0.015	5.9	2.5
0.020	7.0	2.8
0.025	8.1	3.1
0.015	6.2	2.4

Performance and evaluation of test as per DIN 18134, sample measurements and testing facility as per DIN EN 826.

Regupol® sound 47 Regupol® sound 17 Regupol® sound 12 Regufoam® sound 10

sound 10, Version 1, Release 03 2013, sheet 1 of 1

Regufoam[®]

sound 10

Impact Noise Reduction Regufoam® sound 10 as per ISO 10140-3

Measurement of the impact noise reduction, provided by a floor covering on a solid standard floor under test conditions

Description of the test object

- 160 mm raw ceiling
- 17 mm Regufoam® sound 10 screed insulation mat
- 0.25 mm PE-foil
- 80 mm screed
- total thickness 257 mm
- mean value of dynamic rigidity as per DIN EN 29052-1, s' ≈ 10 MN/m³

Mass per unit area:	581.6 kg/m²
Test surface area S:	$4.0 \times 5.0 = 20.0 \text{ m}^3$
Volume of test rooms:	$V_{s} = 54 \text{ m}^{3}$,
	$V_{_{\rm F}}^{'} = 62 \text{ m}^3$
Air temperature in test rooms:	2l̃ °C
Water curing:	> 21 days

Impact noise reduction improvement as per ISO 717-2

 $\Delta L_{w} \geq 34 \text{ dB} \qquad C_{I,\Delta} = -13 \text{ dB}$ The results refer only to the tested structure.

Qualification test for DIN 4109 on 01.08.2012

Publication of the results is authorised by ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 83026 Rosenheim Germany Phone +49 (0)8031 261-0 Fax +49 (0)8031 261-290

We will be pleased to send you the complete test report no. 12-001691-PR01 (PBX3.1-F03-04-de-01) upon request.

Frequency Hz	L _{n,} raw ceiling ½ octave dB	∆L ⅓ octave dB
100	66.1	14.3
125	62.8	13.9
160	68.1	18.6
200	69.0	21.7
250	70.0	25.7
315	71.4	29.4
400	70.4	30.5
500	71.4	32.6
630	71.2	35.6
800	72.4	39.2
1000	72.0	41.0
1250	72.6	43.9
1600	72.9	47.5
2000	72.0	52.4
2500	71.6	56.9
3150	70.9	60.8

BSW

Berleburger Schaumstoffwerk GmbH

Am Hilgenacker 24 57319 Bad Berleburg Germany

Phone +49 2751 803-0 Fax +49 2751 803-109

info@berleburger.de www.bsw-vibration-technology.com

Up to date information is provided on our website and in the PDF versions of this catalogue. The PDF versions are available for download on our website.

Our valid general terms and conditions are provided on our website.

Your Contact Person